Local House Price Modeling:

A Multiscale Approach Incorporating Spatial Non-stationarity

Mehak Sachdeva

Spatial Analysis Research Center School of Urban Planning and Geographical Sciences Arizona State University

Paper: Sachdeva, M., Fotheringham, A.S. and Li, Z. (2022). "Do places have value? Quantifying the intrinsic value of housing neighborhoods using MGWR" Journal of Housing Research.

Premise of the study

Traditional Hedonic Models

 $p = f \quad (S,$

Property price

Structural features

- x1 Square feet living area
- x2 Age of residence
- x3 Basement present or not (categorical)

N,

Neighborhood features

- x5 Distance to the nearest waterfront
- x6 Unemployment rate
- x7 Percentage of technology sector jobs

L

Locational/Contextual features

ŝ	-							•	-	
					۳.					
					1					

MGWR as a model

Study Area

Data source: https://www.kaggle.com/harlfoxem/housesalesprediction

date - Date house was sold **price** - Price is prediction target bedrooms - Number of Bedrooms/House hathrooms - Number of hathrooms/bedrooms sqft_living - square footage of the home **sqft_lot** - square footage of the lot floors - Total floors (levels) in house waterfront - House which has a view to waterfront grade - grade of housing unit sqft_above - sq.ft. of house apart from basement sqft_basement - square footage of the basement **vr built** - Built Year vr renovated - Year when house was renovated sqft_living15 - Living room area in 2015 sqft_lot15 - Lot size area in 2015

21,613 points ---- **19,832** points

Maximum price - \$7.7 Million , Minimum price - \$75,000 Mean price - \$0.54 Million

Literature review

Hedonic Models

In traditional linear regression form and calibrated using the ordinary least squares (OLS) technique

Global Spatial Hedonic Models

These address spatial dependence or spatial autocorrelation in spatial processes assuming spatial autocorrelation to be either in the response variables or in the error term

Local Spatial Hedonic Models

Linear models where parameters are allowed to vary over space to better represent processes generating housing prices Issue: Ignores the spatial effects commonly existing in housing prices

Issue: Housing price processes are assumed to be constant or stationary over space

Issue: Does not account for temporal effects on housing processes $P_i = \sum_j \beta_j X_{ij} + \varepsilon_i$

 $Wy = W_{NT}y = (I_{T} \otimes W_{N})y,$ $WX = W_{NT}X = (I_{T} \otimes W_{N})X,$ $W\varepsilon = W_{NT}\varepsilon = (I_{T} \otimes W_{N})\varepsilon$

 $P_{i} = \sum_{j} \boldsymbol{\beta}_{ij} \left(u_{i}, v_{i} \right) X_{ij} + \varepsilon_{i}$

Y

Best subset

Best overall model

Forward selection

The variable with the greatest additional improvement to the fit is added to the model

Contextual

Constructed an "index" variable:

Houses close to the waterfront and at high elevation = 1

Houses away from the waterfront and at a lower elevation = 0

Approximates: "Waterfront view"

Categorical variables

Converted waterfront accessibility from (0,1)

to

Distance to nearest waterfront (continuous)

Log Transformation

$$\ln y_{i} = \sum_{j} \beta_{ij} (u_{i}, v_{j}) \ln X_{ij} + \varepsilon_{i}$$

Data description

Dependent Variable

House Sales Price (May, 2015 to May, 2016) - in dollars

Independent Variables

- 1. Square Footage of living area
- 2. Age of the structure
- 3. Presence of basement in a residence
- 4. Distance to the nearest waterfront (constructed using Near Distance Tool - ESRI ArcMap Software)
- 5. Unemployment Rate (2014 ACS 5 year estimate interpolated from census tracts)
- 6. Percentage of technology sector jobs (2014 ACS 5 year estimates, interpolated from census tracts)
- 7. Index composite measure of waterfront access and elevation (capturing view from the house to waterfront)

21,613 points ---- **1**9,832 points

Maximum price - \$7.7 Million , Minimum price - \$75,000 Mean price - \$0.54 Million

Global Model Results

Covariates

- x1 Square feet living area
- x2 % of technology sector jobs
- x3 Unemployment rate
- x4 Basement present or not (categorical)
- x5 Distance of the nearest waterfront from the property
- x6 Age of the structure
- x7 Composite index

	Coefficients			
Constant	6.89 e-17			
β ₁	0.57***			
β ₂	0.422***			
β ₃	-0.08***			
β ₄	- 0.032***			
β ₅	- 0.257***			
β ₆	0.011***			
β ₇	- 0.031***			
R ²	0.764			

Covariate Effect

- x1 Square feet living area
- x2 % of technology sector jobs
- x6 Age of the structure
- x7 Composite index
- x4 Basement present or not (categorical)
- x3 Unemployment rate
- x5 Distance of the nearest waterfront from the property

	Coefficients
Constant	6.89 e-17
β ₁	0.57***
β ₂	0.422***
β ₆	0.011***
β ₇	- 0.031***
β ₄	- 0.032***
β ₃	-0.08***
β ₅	- 0.257***
R ²	0.764

Interpreting Log-Log Model Estimates

Square feet living area - 1% increase in sq.ft. living area increases price by 0.57 %

 \Rightarrow 1 sq.ft. increase leads to \$130 increase in price

	Coefficients
Constant	6.89 e-17
β ₁	0.57***
β ₂	0.422***
β ₆	0.011***
β ₇	- 0.031***
β ₄	- 0.032***
β ₃	-0.08***
$oldsymbol{eta}_5$	- 0.257***
R ²	0.764

MGWR Results

MGWR model

MGWR model

Unemployment rate

Basement present or not (categorical)

% of technology sector jobs

Age of the structure

Constant

Distance to nearest waterfront from the property

Square feet living area

Composite Index

Bandwidths

Bandwidth Visualization

IQR - Variability tests of local parameter estimates

IQR of local estimates and Standard Errors of Global estimates

Empirically, 2*SE is considered the expected variation in the values (contains about 60% of all the values)

Indicates a possible nonstationary process if IQR (which includes 50% values) is larger than 2*SE

Test for Spatial Non Stationarity

Indicates a possible nonstationary process if IQR (which includes 50% values) is larger than 2*SE

Abbreviation	2 * Standard Error	IQR	Monte Carlo Test		
	· · · · · · · · · · · · · · · · · · ·				
sqft_living	0.024	0.41	√		
age	0.017	0.08	✓		
basement_p	0.015	0.025	√		
waterfront_dist	0.014	0.86	✓		
tech_jobs	0.012	0.046	1		
unemp_rate	0.015	0.024	√		
index	0.013	0.37	1		

Parameter Estimates: Square footage of living area

12 Miles

6

OLS -> β = 0.57**

MGWR (BW = 62)

Legend

Parameter Estimates: Composite index

Panel (a)

Parks

Parameter Estimates: Distance to nearest waterfront

Panel (a)

 -0.484 - 0.279
 -0.171 - 0.130
 ■ Park

 -0.278 - 0.210
 -0.129
 Global estimate

 -0.209 - 0.172
 -0.127 - 0.000

Parameter Estimates: Age of the structure

MAUP

Conditional effect of age of a residence on house price value - local vs global models

Aggregation units

Aggregation units

Zipcodes 73

Census Tracts 373 Block Groups 1,333

Simpson's Paradox effect So which one of these maps is correct?

In global models

Areas with older and more expensive housing clusters are compared to areas with cheaper and newer housing clusters

And hence, the results suggest a preference for older housing

0.2

0.1

-0.1

-0.2

Parameter Estimates: Technology sector jobs

Measuring intrinsic neighborhood value

yi = y_mean + $\mathbf{a}_i \mathbf{\sigma}_y + \mathbf{\sigma}_y (\sum_{ij} \mathbf{\beta}_{ij} (\mathbf{x}_{ij} - \mathbf{x}_j - mean)) / \mathbf{\sigma}_x$

Predicted house prices Base house prices

Intrinsic location effect

House prices explained through structural and neighborhood attributes

Predicted house prices

12 Miles

1217308 - 2617666

2617667 - 7734311

House prices explained through structural and neighborhood attributes

Parameter Estimates: Intrinsic location value

References for detailed description of MGWR:

1. Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). *Geographically weighted regression : the analysis of spatially varying relationships*. Wiley.

2. Fotheringham, A. S., Yang, W., & Kang, W. (2017). Multiscale Geographically Weighted Regression (MGWR). *Annals of the American Association of Geographers*, *107*(6), 1247–1265. <u>https://doi.org/10.1080/24694452.2017.1352480</u>

3. Oshan, T. M., Li, Z., Kang, W., Wolf, L. J., & Stewart Fotheringham, A. (2019). MGWR: A python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. *ISPRS International Journal of Geo-Information*, *8*(6). <u>https://doi.org/10.3390/ijgi8060269</u>

4. Yu, H., Fotheringham, A. S., Li, Z., Oshan, T., Kang, W., & Wolf, L. J. (2019). Inference in Multiscale Geographically Weighted Regression. *Geographical Analysis*, gean.12189. https://doi.org/10.1111/gean.12189

Thank you!