Are we modeling spatially varying processes or non-linear relationships?

Mehak Sachdeva

Publication: Sachdeva M., Fotheringham A. S., Li Z., and Yu H., (2022) "Are we modeling spatially varying processes or non-linear relationships?" *Geographical Analysis*

Structure

1. Problem Statement

2. Research Objective

3. Research Design

4. Intellectual Merits and Broader Impacts

1. Problem Statement

Usual Interpretation

$y(response) = \beta(process) * x(covariate)$

Possible Reality

$y(response) = \beta(process) * x^2(covariate)$

Problem Statement

Consider a situation such that:

Problem Statement

Parameter estimates from MGWR

 Without examining for the possibility of nonlinearity, the spatial variation in this surface would then be incorrectly interpreted to represent process spatial non-stationarity.

• How do we differentiate such situations from presence of non-stationarity in processes?

Background

Why is this problem important?

housing supply = $\beta_{0(u_i,v_i)} + \beta_{1(u_i,v_i)}$ (house price)

(Note: Hypothetical example)

Background

True relationship

(Note: Hypothetical example)

Background

Estimated relationship

housing supply = $\beta_{0(u_i,v_i)} + \beta_{1(u_i,v_i)}(\sqrt{house price})$

(Note: Hypothetical example)

So, we need to separate these two scenarios

Modeling Processes

Process Spatial Nonstationarity

Local Models e.g. MGWR

E_i

$$y_i = \sum_j \beta_{ij} (u_i, v_i) X_{ij} +$$

Nonlinear Relationships

Models e.g. GAM

$$y_i = \sum_{j=1}^p f_j(x_{ij})$$

Otherwise we make incorrect inferences about processes

* Assuming the covariate is spatially varying

1. Is there an easy way to **detect when spatially varying parameter estimates are masking nonlinear relationships**?

2. Conversely, is there an easy way to **detect when estimated nonlinear relationships are masking process nonstationarity?**

• **Describe a simple test** to check whether parameter estimates

generated by local models are manifestations of nonlinear relationships rather than spatially varying processes

• **Demonstrate feasibility of such a test** in simulation studies and empirical research with real-world noisy data

Diagnostic test described

Parameter estimates from MGWR

Covariate - *x*

Diagnostic test described

No evident structure $\,\sim$ Suggesting no indication of non-linearity

Parameter estimates from MGWR

Covariate - *x*

Plot for further evidence on type of non-linearity

Revisiting the example:

Revisiting the example:

(b) Modeled relationship between β^*x and x

3. Research Design

Processes are **spatially nonstationary** and **independent** of the covariates

 $y = \beta_1 * x_1 + \beta_2 * x_2 + \epsilon$

 β_1 and x_1 are independent β_2 and x_2 are independent

Processes are **spatially stationary** and **derived** from the covariates

$$y = \beta_1 * x_1 + \beta_2 * x_2 + \epsilon$$

 $\beta_1 = k_1 * x_1 \text{ and } \beta_2 = k_2 * x_2$

$$y = k_1 * x_1^2 + k_2 * x_2^2 + \epsilon$$

 k_1 and k_2 are near constant terms

Experiment I – Non-stationarity in processes

$$y = \beta_1 * x_1 + \beta_2 * x_2 + \epsilon$$

Experiment I – Diagnostic test: Detecting nonlinearity as a cause of spatially varying parameter estimates

Nonlinearity Not Detected

Experiment I – GAM result plots

Experiment I – Diagnostic test: Detecting spatial nonstationarity when nonlinearity is assumed

Residuals from GAM and MGWR

Moran's I value: +0.73 (p-value: 0.001)

Process Nonstationarity Detected

Experiment I - Further evidence of non-stationarity in processes

Simulated vs Modeled parameter estimates from MGWR

Experiment II – Complete non-linearity in relationships

Experiment II – Diagnostic test: Detecting nonlinearity when spatial nonstationarity is assumed

Nonlinearity Detected

Experiment II: Plot for further evidence on type of non-linearity

Modeled relationship between $\beta_2 * x_2$ and x_2

Experiment II: Parameter estimates from MGWR

Using x₁ and x₂ as predictors

Using x_1^2 and x_2^2 as predictors

Experiment II – GAM result plots

Experiment II – Diagnostic test: Detecting spatial nonstationarity when nonlinearity is assumed

Residuals from GAM and MGWR

Moran's I value: Not significant

Process Nonstationarity Not Detected

Research describes **diagnostic tests** to detect these misspecifications

Process Spatial Nonstationarity	Nonlinear Relationship*
MGWR	MGWR
Correct model form	Biased estimates due to misspecification
Process Spatial Nonstationarity	Nonlinear Relationship*
GAM	GAM
Biased estimates due to misspecification	Correct model form

* Assuming the covariate is spatially varying

4. Intellectual merits and Broader impacts

• **Misinterpreting local estimates** due to misspecified covariate functional form plague the local analysis literature

• This **simple test must be a part of diagnostics** in local modeling

• **Expands the tools and tests within local spatial analysis** to enable stronger, more plausible interpretations

Thank you!

Any Questions?